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Digital for R&D: Motivation & Context
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of each sector of the economy and our daily lives.

We have embarked on an industrial transformation involving all business

lines to decarbonize the entire company. To this end, we invest in
researching, developing, and implementing transition technologies.

According to the technological neutrality principle, there is no single
solution to achieve the energy transition, we need a technological mix that
can be adapted to different applications and needs. This is why we are
developing a wide range of technologies that support the decarbonisation

Eni applications in R&D to achieve Net Zero Emission
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How Al can boost experimentation

?_o,_ % EXPERIMENTAL PROTOTYPAL = A4 DEMONSTRATION
m TRL1-3 TRL 4-6 42 TRL 7-1

= . o . i
=1 Experimental data, scientific Data from pilot plant, Digte firon demonstrqﬂon
% . . plant, advanced physical
>4 papers, physical models advanced physical models
= models
« Dataenrichment (from * Predictive and prescriptive ¢ Industrialization and
existing papers or DBs) models deploy of data-driven
«  Knowledge * Process parameters models and control
n extraction/summarization optimization systems
z and hypothesis *« Anomaly detection  Dashboard for real-time
O generation with GenAll * Surrogate models plant monitoring
'5 « Optimal experiment « Continuous improvement
- planning
8 « First predictive model
prototypes

*  Physical model calibration
* Surrogate models

i

Develop a Digital Twin of the plant since the Pilot phase to exploit it in demonstration phase

1] Suardi, M., Cannarile, F, Guastone, G, Fidanzi, A, Millini, R, Testa, D., A Framework for the Application of Al Solutions for Facilitating and
Speeding-Up the Industrialization of Innovative R&D Technologies for Targeting Net-Zero Emissions, Society of Petroleum Engineers - Abu
Dhabi International Petroleum Exhibition and Conference, ADIPEC 2023, 2023. recipient and may not be used, published or redistributed without the prior written consent of Eni Spa



DESCRIPTION

CAPABILITIES

Example — Al for material discovery

O Advanced Modeling & Simulation

. Artificial Intelligence

EXPERIMENTAL PHASE

Q)

HYPOTHESIZE

SCREENING

TESTING

Defining the problem and desired
material properties based on the

intended application. Perform literature

review and create a first database of
material

Reviewing prior research,
patents, and material databases
to gather relevant insights.

Extracting and organizing data
from existing experimental or
computational investigations

Simulating by first principle
methods data set when these are
not available or not reliable.

Formulating hypothesis and
proposing a set of candidate materials
with target properties for further
evaluation

. Proposing a promising set of

candidates for further evaluation
via iterative exploration

O Formulating hypotheses using

theoretical or computational
model chemical physical-based

Evaluate material candidates by
analyzing their predicted properties
and stability, prioritizing those with

the highest potential for success in the
intended application

O . Running computational

chemical physical-based
models and/or Artificial
Intelligence based ones to
assess candidates’ properties.

O Assessing key factors s by
focusing on those with the
highest likelihood of success.

Determining synthesis pathways,
synthesizing materials, measuring
properties at atomic and macroscopic
scales, and refining processes based
on experimental results

O . Extract synthesis recipes from

literature (Al) and propose
potential routes using advanced
computational modeling
techniques.

. Analyze experimental data

O Using computational model to

validate experimental results

The discovery process involves four iterative phases: study (analyzing known data and materials), hypothesize (generating candidate

structures), screening (evaluating candidates), and testing (promising materials through experiments).



Example - Al for accelerating carbon capture

technologies

Objective

PROTOTYPAL PHASE

Support research and development in designing, validating and industrializing a new technology for CO2 capture through
developing artificial intelligence tools

FIRST-PRINCIPLES
MODELING

OPTIMIZATION AND
CONTROL

PREDICTIVE

MODELING

Objective

Provide a mathematical description
of the system behavior for a better
understanding of the system and
simulate scenarios of interest

Prescribing the optimal set-points for
the experimental setup in order to
performance in real-time

Providing real-time and automated
assessment and prediction of
quantities of interest

Input

Experimental data
Data of literature
Subject Matter Experts knowledge

Simulation from the calibrated first-
principles model

Experimental data
Calibrated first-principles model

Developed solution

First-Principles model based on
differential  equations that allows
simulating the trajectory of an
experiment

Meta-heuristic optimization algorithms
(differential evolution) to calibrate
physical model parameters

Reinforcement learning model to
prescribe the best set points for the
experimental setup to optimize system
performance in real-time using
simulations from the first-principles
model

Machine learning (deep  neural
networks) model to predict quantity
of interest to be monitored



Reinforcement Learning for optimal system control oromn o

*  Modeling approach: the system is represented by the first-principles model. The agent interacts instant by instant with
the first-principles model by proposing new values of the variables to be optimized (actions) and causing the model to
evolve (new state) and return a new value of system efficiency* (reward).

> e |V
i inci ] Cx) Agent action
First-Principles model C=a g :
response RL Agent - — the algorithm
State achieved by the == =» proposes new values
system . for the control
.+° ',o"' « variables
° — ‘
Reward A
am

System Efficiency
First-Principles Model

RL Algorithm: Deep Deterministic Policy Gradient (DDPG)

Results
System performance obtained with RL is doubled with respect to the not optimized setting

6 *metric related to system performance while taking into account energy consumption (higher values are better)



Focus on Design of Experiment &
Optimal Experimental Design




Why Design of Experiments (DoE)?

CHALLEGE IN R&D THE ANSWER: DoE
. Developing new technologies or processes involves many variables
. Resources are limited: experiments cost time, money, and materials. « DoE provides a statistical
ial-and y £ . L structured approach to
. Trial-and-error or “one factor at a time" testing is: experimentation
Too slow

Cannot reveal interactions between factors ! ;
« Each test is designed to

Often gives incomplete or misleading results contribute maximum
information to the overall
picture

THE NEED
. !
R&D teams require: « Fewer runs, deeper insights

faster and more reliable

Learning more with fewer experiments. i~ _
decision making

Building a quantitative understanding of how factors affect outcomes.

Predicting and optimize results before scaling up.



What is DoE?

A SMARTER WAY TO
EXPERIMENT

DoE is a structured method to plan and
run experiments

Instead of changing one variable at a
time, it tests multiple factors together in
a systematic way.

Each experiment is chosen so that,
combined with the others, it builds a
complete picture of how the system
behaves.

Controllable input

variables (X)

NAAR

WHAT IT
DOES

ldentifies the factors that really matter
(“vital few”)

Reveals how factors interact (e.g.
temperature may matter more at high
pressure)

Builds a predictive model linking inputs
> outputs

Helps find the best settings for
performance, quality, or cost.

Process/ product

WHY IT
MATTERS

Saves time and resources by avoiding
redundant trials.

Provides scientific confidence instea of
guesswork.

Creates knowledge that can be reused
and scaled up.

Output variables

@)
[ 3

(Y)

O

NAAR




The DoE Journey

An iterative process where each step builds on the results of the previous one

LEARNING LOOP

1. SCREENING } { 2. CHARACTERIZATION } 'L 3. OPTIMIZATION } 'L 4. VALIDATION
Efficiently identify the most Quantify how significant Locate the optimal settings Formally validate the final
influential factors (the "vital factors behave collectively by for process variables by model. Use statistical analysis
few") from a wide range of modeling their main effects modeling response to test the significance of all
possibilities. This reduces and, crucially, their interactions. curvature (i.e, quadratic model terms, then conduct
complexity and focuses The outcome is a first-pass effects). Thisinvolves running  confirmation runs to
subsequent efforts on a mathematical model of the new, targeted experimentsto empirically verify the model's
smaller, more manageable set process that explains how precisely estimate the factor predictive accuracy and
of variables. variables work together. levels that maximize or ensure the results are
mMinimize the output. reproducible
Method: Fractional factorial design Method: Full factorial design (linear  Method: Response Surface Method: Model diagnostics,
(Iinear screening model) model with interaction terms) Methoo’o/ogy (,QSM) with confirmation runs
quadratic models (CCD, Box—
Behnken).

This workflow is an example of an iterative learning loop: in practice, steps can also be revisited if needed, and the cycle

continues until the model is accurate enough and the optimum is confirmed with confidence.




From DoE to Optimal Experimental Design

Evolving from a fixed plan to a dynamic learning strategy

Classical DoE
The statistic blueprint

PLANNING Fixed and pre-defined (e.g., Factorial).
FLEXIBILITY All runs are decided upfront with no adaptation
(rigid)

APPLICABILITY Limited to simple, linear, or polynomial models.

EFFICIENCY Some tests may bring little new information.

Optimal Experimental Design
The adaptive strategy

Model-based and built sequentially

Works as a loop in an adaptive way
(run » update model » choose next).

Handles complex, non-linear systems and
practical constraints.

Leads to faster decisions with fewer experiments.

OED transforms experimentation from following a fixed map to using a smart GPS that constantly

finds the fastest route to the objective




Optimal Experimental Design

Workflow

Experimental
or simulation
tests resulting
from identified
experimental
setting

Optimization
search based
on the
selected
criterion
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Start

Experimental
test data or
simulations

Definition and
update of the
acquisition
function

Data driven
probabilistic
ML model
update

(Surrogate
Model)

Model output
with relative
uncertainty

Target
Variable

ML Model - Step O

° Experimental point

P ——— ML Model
/ \ 0 .
* o\\ Prediction
/ ® -\ Interval
\
..~__// Minimum

confidence point

»

Target
Variable
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ML Model - Step 1
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»

Variable X

® Experimental tests

* Tests suggested by the OED methodology



Surrogate Model - Data driven probabilistic ML model

A probabilistic ML model is used to approximate the unknown process that relates the inputs and the outputs
The model should be able to provide

1. A prediction of the output, which is more accurate the more data we have to train the model on
2. A prediction interval around the prediction to represent the uncertainty of the model about the
prediction

13

Inputs

Inputs

=== True Function
—— GP Mean
95% Confidence
l l 12 1

e Observations

11 1
Chemical Surrogate

process /"' model

Update

Output

9
Y \v)
Observed output [ Predicted output
(solids production) (solids production)

T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 15 2.0
Input

Gaussian Processes (GPs) are typically used for the development of the surrogate model



Making decisions: the acquisition function

An acquisition function defines how to select the inputs for the next experiment. Different acquisition
functions allow for different experiment design strategies.

Exploitation s

—— GP Mean

« "Go where we think the best results are” Exploitation e
« Like going down the lowest visible valley

Exploration ’
« "Go where we are most uncertain® )
« Like mapping unknown territory :,
Intermediate strategy 9
« "Go where we are confident of the best
results, but allow some exploration” .

 Balances exploration and exploitation

-2.0 -1.5 -1.0 -0.5 0.0 0.5 10 15 2.0

Each acquisition function has its advantages and disadvantages, and its use depends on the objective.

14

The information contained in this presentation is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Eni Spa



Choosing the next experiment: the acquisition function

An example of acquisition function

x* = argmax{[E[f (), 0 (0] |« ¢ (o) - [Be ()]

i X
Selected next

experimental
point

Expected Improvement

Assigns a high score by balancing
two strategies: Exploitation
(leveraging the model's current
certainties, testing where it already
predicts an optimal outcome) and
Exploration (investigating uncertain
areas that might hide a
breakthrough).

v

Error Reduction

Gives a high score to the
experiment that will most reduce
the model's overall empirical error.
Its goal is to make the model
globally more accurate and
trustworthy.

Constraints

Applies a mathematical penalty
factor, directly lowering the score of
any experiment that violates real-
world limits (e.g., cost, time, safety).

This acquisition function combines these competing scores to find the experiment with the highest overall
rating




The optimization algorithm

The optimization algorithm is the numerical solver that finds the most promising next
experiment, given the surrogate model and the acquisition function.

HOW IT WORKS

1. The acquisition function (derived from the surrogate model) defines the objective
function to be optimized.

2. Thealgorithm explores the input space to find its maximum.

3. Theresultis the next experimental point to test.

TYPICAL SOLUTION METHODS

+ Gradient-based search: fast if the function is smooth, but may get stuck in local
optima.

Example of iterations using meta-
heuristic optimization
(Particle swarm optimization)

» Global search heuristics: genetic algorithms, simulated annealing, particle swarm —
slower but robust.

« Bayesian optimization routines: combine Gaussian Processes with acquisition
functions; popular for expensive experiments.

16




OED - Feature contribution

17
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The surrogate mode cab be used to
analyze the most impactful features of the
system and what is their possible effect on
the prediction.

Shapley values are typically used to infer
the feature contribution.

* Feqturel
* Feqtures
 feqture 4
* Feaqture8
* feature?/
. Feqture6 Negative
* feqture9 'mpact on
* Feature?2 rarget

Positive impact
on target
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Optimal Experimental Design in Bio-feedstocks
pretreatment processes

18



BioRefining Value Chain

Enhancing value across processes

BIOFEEDSTOCK

g
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A wide variety of raw materials
such as:

» vegetable oils
tallow
waste or used cooking oil (UCO)

wastes or residues such as
nonfood-grade vegetable oils,
animal fats, sludge palm oil mill
effluent (POME)

BIOMASS TREATM E'N'h
| 1

3 - ,

Pretreatment unit is necessary to
remove impurities such as
phosphorous, metals,
polyethylene, nitrogen and
chlorine-containing components
that are naturally present in some
raw materials

ECOFINING

Ecofining™ is proprietary
technology to converts cooking
oil, tallow and non-edible
vegetable oils to produce biofuels

BIOFUELS

Hydrotreated vegetable oil (HVO)
is a newly developed renewable
diesel that uses renewable
feedstocks via the hydrotreatment
process




Development of an Unconventional Pretreatment Process

Definition of UnConventional Bio-Feedstocks Definition of UnConventional Pre-treatment Process

The unconventional raw bio-feedstocks usually contain high The unconventional pre-treatment process is based on the
amounts of pollutants such as: right selection of:

= metals, = Operating conditions (contact time, temperature, and
= phosphorous, pressure)

= salts, etc. = Ratio between reagents and phases (oil, water, other

chemicals agent, etc.)

g Reaction Section eeeeemd Separation Section

Crude
Vegetable
(o]}

e Purified Oil
-

To overcome the conventional pretreatment processes

battery limits and to widen the bio-feedstock portfolio,

Eni R&D department has developed an innovative pre-
treatment technology.

The UNCONVENTIONAL pre-treatment has to be :
e Effective in the contaminants removal;

* Simple with low chemical agents e few reaction steps
* Flexible capable to purified a wide range of biofeeds




Unconventional Pretreatment Process: Project Team and Workflow

N Linear Models
-
* / _\ ) \

= ~
D Bio-feedstocks (3 Cluster) N

N

Tl AN
}E@ _ ® RS ) Optimal Experimental

<1, Subéi:teh:tztter ® ENI R&D Design
Experiments (137 test) ’

( :

\

'\ ‘\‘ DICOX &— scIiDear::ist ) /.

N \ ./ S
~ \ / ~
\ hd / /
~ ® -
— -~ P e —
- . —
Solution Development . =s== = =
Experts
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Unconventional Pretreatment Process:
Digital Boost

Data Aggregation
Create an experimental dataset and apply advanced analytics
techniques to achieve deeper insights and knowledge.

Predictive Model and Optimization

Starting from Eni R&D models, develop predictive data-driven linear
models to estimate reaction efficiency based on process conditions and
bio-feedstock properties

Optimal Experimental Design
Apply Optimal Experimental Design techniques to identify new optimal
experimental tests based on different criteria

Tool Development
Develop a shared tool to allow all R&D users to independently integrate

DoE within daily work

The information contained in this presentation is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Eni Spa



Unconventional Pretreatment Process: Data Driven Models

Data Aggregation Predictive Model and Optimization

The model shall be fed with proper input data.
Different strategies have been implemented:

In details:
= 6 Parameters of process operative conditions = Different bio-feedstock clustering
= 17 Parameters of bio-feedstocks (e.g. chemical and = Different predictive models

physical properties such as acidity, density, carbon %)

63 0.72

Set1 linear 0.
Set 2 forest 0.38 0.29
6o (R e Set3 ml 317 2857
pAR e W B B o e B T B B e T A B B o o oy e 5% P
2 3 0 3 3 % 03 3 3 3 3% % 0 3 %8 % 0 0 0 SoNS ;
c ¢ - ¢ c c c ¢ ¢ ¢ ¢ ¢ o~ ¢ ¢ c -~ = HRE T e Set 4 gradient 8.46 152.70
1292228835952 22328822¢8¢8¢8 S St e
W3z °o 32 3 2 2 23 -.o,-"“;. = = Set5 forest 21 872
4 o [0 N oo z_‘..r--" S
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5 ’ P
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=]
g‘ e Cluster 2 forest 254 10.04
Q :
- .
e b Cluster 3 mip 0.86 218
g °©°
s
& g z
£
Feature value Multi set gpr 327 4285

At this stage is deemed necessary: Model training stage:

= analysis of input data through ML techniques = Multi-set cluster selected

* to share main outcomes with the subject experts = Gaussian Process Regressor selected




Unconventional Pretreatment Process: Optimal Experimental Design (OED)

Optimal Experimental Design goal is to define a new set of Experi mental Desig N
experimental test which allow to:

«  Filtering inputs relevant to output (screening) dsSe€
* Build a model to correlates inputs and output (modelling) Oper Cond 1 0% -1% 7% -3% 13%

. . . Oper Cond 2 0% -41% -41% -41% 6%
In the first stage of analysis, the goals of the experimental
investigation shall be defined in order to define the constraints. Oper Cond 3 0% 64% 0% 94% 200%
The constraints may comprise many aspects, even not strictly Oper Cond 4 0% -6% 259% 259 259
related to the technical activity such as time and cost efforts.

Pretreatment 0%  14%  30% 1% %

Efficiency

Selec‘UOh CHter'a Standard Deviation 0% -72% -68% -37% -45%

* The new experiments are defined through

The goal of this specific case study (which is not general) isto the OED procedure based on:
minimize the pretreatment efficiency.

v Criterion 1: efficiency minimization

In order to have different new experimental points, it was decided e .
to combine points with lower pretreatment efficiency and higher Criterion 2: maximum model

model uncertainty. uncertainty

For the Gaussian Process Regressor (GPR), model uncertainty is the
variance between model predictions and experimental results

24



Unconventional Pretreatment Process: Web APP
The final stage is the development of a tool (Web APP) with the features:

= Collection, management and aggregation of experimental data (database);

= Prediction by the data driven model of new experimental data;

=  Application of Optimal Experimental Design to efficiently boost the entire development process by means of
upgrading the predictive model.

Database analyses and experiments OED

R Train 7 Predict & Risultati
S - 0 g - Parametrida OED
— Performance dell'ultimo modello allenato, valutate con metodo Leave-One-Out (il modello & allenato su tutti i punti del dataset tranne uno che rimane in
Histogram allows you to explore he distribution of various varial bes within the experimental database. validazione, a rotazione. l calcolo delle metriche & fatto sui punti in valutazione)
alpha beta
Add ftiers 1.00 =1k 0.20 =
MAPE
.
dataset has 140 rows. Fi d 40 row ° ... « ® 5()/0
e o ..\‘ i
* o0%.4e
Selectont ST I AN 08 .o % .'.-’.h. MAE Obiettivo: alta conversione/bassa conversione
o @ o, iih .
-] mpaig ° LY w®. 3-27
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Introduction

Objective:

 Reduce capacity downtime

* Speed up underperformance detection
« Speed up O&M troubleshooting

Problem:

« Multiple masking factors overlapping
 Handle 100ks of data points per plant each day
« Utility-scale PV are huge

Solution:

« |dentify where the losses are located
« Categorize and rank issues

« Fully automatized process

« User-friendly application

27

Methodology Adopted

From a “basic” performance
monitoring at plant level

Production
PR

e
Insolation - Capacity (DC)

Py
@d

To a set of Key Performance Indicators
dedicated to main devices (inverters,
trackers, combiner boxes)

= Automatically calculated
= (Cleared of all the masking factors
= Comprehensive of suggested
corrective actions



cale problem

Utility-scale plant

28

250 MW

o0 inverters

1000 CBs
500,000 modules
2,500,000 m?

3000 signals/plant
1.7 million
datapoints/day

Milano




raditional monitoring tools

Milano

r / F . /
Yoy s PECENTRAUE:

N Centrale

INnverter

4 MW
16 CBs
8000 modules

1 inverter

!
|

¢ 40,000 m? D 54 MW

Okimodules

29



Digital tools as a solution to the scale problem

Combiner box

250 kW

~20 strings
500 modules
2,500 m?

T inverter

W4 MW
\_9kimodules

20 From the MW scale... ..tothe 100s kW scale



Data quality and event labeling

Data analytics tools (Al, ML, physical models...) give access
to a solid data quality preprocessing and event labeling.

Discarded data
(unphysical, shifted, inconsistent, ...)

Data clustering

Plant metadata (event labeling, ...)

(GPS, nominal power, layout...)
Actual Weather data ﬁ(%)
(Temp, Irr, Wind, RH..)) ‘ @]

Actual production data

(Power, current, voltage..) Reconstruct normal behaviour model

(Digital Twin expected production output, ...)

Anomaly identification,
quantification, categorization

31



Data quality and event labeling

Power curve before preprocessing

Data analytics tools (Al, ML, physical models...) give access -
to a solid data quality preprocessing and event labeling.

Irradiance sensors anomalies.

MPP deviations (technical or economical curtailment).
Tracker's wind stow mode.

Temperature derating.

Rear Irradiance correction for bifacial systems.

Tilted irradiance correction by angular response.
Interrow self-shading effects.

INnverter clipping detection and correction.

Inverter AC power

.t ® o
'] . o - L - .
ot % a0 » . . . Y
. Mt o, .\."."...: al
& LA AT LASIS A
) 200 400 600 800 1000
Plane-of-array irradiance [W/m?] ﬁ

Power curve after preprocessing

°
Inverter AC power

200 400 600 800 1000
Plane-of-array irradiance [W/m?]
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Key Performance Inidicators (KPls)

“Advanced” PR

Target:
 Inverter

Comprehensive metric to
have a bird-eye view of the
macro trends occurring in
the plant.

33

DC power health

Target:
e Combiner box

Detectable issues:

CB off / unavailable
Non-communication
Disconnected strings
Modules degradation
Misalignment with as-
built documentation

Tracker health

Target:
« Motor

Detectable issues:
Non-communication
Stalled trackers
Suboptimal angle
Wind stow position

DC-AC health

Target:
* |nverter

Detectable issues:

« Inverter off / unavailable
*  Non-communication

* Low efficiency

« Derating



KPIs developed - Performance Ratio (PR)

Ba5|c Derformance Ratlo Inverter level Advanced Derformance Ratlo Inverter Ievel
I &l 1) I l il [ ] L A G I N Rl il RIT e \ | 14 i i
‘; ‘1 Y \ |f ‘ _ O | A b Lattd | AT EAT M

Ill“ ‘ ;‘\ [ Hj.“ MIH

_Inverter

« Any possible underlying issue is masked « Results are clearer and more reliable
by a heavy curtailment from the grid « Specific pattern have completely
operator that artificially reduced the different meaning
daily standard PR « Helpful in understanding the more

24 affected areas



From detailed “top-down” Data Analytics...

35

CE curre

DC power — Combiner Box level

Normal behaviour

Low performers

DC capacity at each Combiner Box
(CB) is regressively fitted and
normalized to actual weather data.
A daily peer-to-peer CB comparison
identifies underperformers.

Tracker angles — Motor level

Sub-optimal

Captured irradiance at each tracker
Is compared to the optimal under
ideal orientation.

A daily analysis identifies setpoint
Issues (i.e., software) and actual
angle issues (i.e.,, mechanical).



... to “bottom-up” hew compact KPIs

DC power health — Combiner Box level |

. |06

Information at the 100s kW scale

Clear anomaly identification:

« CB off (red)
« Disconnected strings (yellow)
« More strings than as-built (dark green)

36

Motor

Tracker health — Motor level

Date
Information at the 100s kW scale

Clear anomaly identification:
« Stalled trackers (continuous
yellow/orange)

« OnNgoing maintenance activities
(yellow/orange spots)

0.5



KPIs cross analysis

Comparing KPls at inverter level:

 Immediate imputation of the
loss category and identification
of the anomalous equipment

 Verification over time of the

effectiveness of the corrective
actions

37

Combined Performance Metrics

Combined Performance Metrics

Performance Ratio Ower Time

i

—-p—r——-n-—-"-',.?“ = - PS5
0s
o4
DC Health OC Health
L 1
DC
health -
2.2
1
DC-AC Conwerdion Health AL Health DC-AC Comversion Health AL Health
! 1

DC-AC
health

AU 13

L
2 nss
5.
¥ 034
':4 0s2

L

Mgz 10 Aug 15
I

Tracker
health

Matere




Automated Weekly Reporting

38

Actionable Items

Table ~

Total actionable capacity: 2.84 MW

tal capacity loss [MW] = AC health = DC losses Tracker health
B4 0.64 CBs with no DC health: B0402-DC4-CB3 - B0402-DC4-CB4 - B0402-DC4-CB5; B0402-TC1-MOTS5 -
BO2 0.38 CBs off: B0209-DC3-CB5 - B0209-DC5-CB3;
BE0311 0.42 CBs with no DC health: B0311-DC4-CBL - B0311-DC4-CB2 - B0311-DC4-CE3 - BO311-D¢ BO311-TC1-MOT3
BEO31. 0.23 CBs off: B0314-DC1-CB5;
BO2 0.23 CBs with no DC health: B0207-DC1-CB1 - B0207-DC1-CB2 - B0207-DC1-CB3 - B0207-D( B0207-TC1-MOT2
BO 0.09 CBs with possible disconnected strings: B0404-DC5-CBL;
BOLL. 0.04 CBs with possible disconnected strings: B0112-DC4-CB2;
BOL 0.05 CBs with possible disconnected strings: B0104-DC4-CB4;
BO2 0.04 CBs with possible disconnected strings: B0206-DC2-CB4;
BO4 0.06 CBs with possible disconnected strings: B0403-DC4-CBL - B0403-DC4-CB2;
Inverters off or non communicating for the entire week ~

No inverters off or non communicating for the entire week.

Combiner boxes with DC health < 10% or Nan ~

» B0209-DC3-CBS
» B0209-DC5-CB3
»B0314-DC1-CBS

Suggested action: These CBs are most likely disconnected, non-communicating, or with severe issues.

Every week report only the
outstanding anomalies.

Quantify the anomalies in terms of
potential capacity lost to prioritize the
activities.

Clearly list the devices on which the
O&M need to focus their inspections.

Suggest possible root causes.
INnteractive and downloadable.

Faster transition from the analysis of
the anomalies to the action on site.



Results

« Platform deployed on 4 assets
DC Capacity monitored: ~ 650 MW

Technologies: mono and bifacial; c-Siand CdTe; back-tracking and true-tracking
Anomalies identified (Nov 2024 - Feb 2025): ~140

No false positives so far

Anomaly type Resolution status
Stalled
tracker Disconnected Trouble-
23% strings shooting >\
40% 6%
Fixed
Difference 83%
with as-
built Repair
9% ongoing
1%
CB out of
comm.

14%

‘ CB off
14%

39



Conclusion

40

Developed and validated on ~650 MW a digital platform designed to
enhance the performance monitoring of large-scale PV plants.

Preprocessing and data filtering via physics-driven and data-driven
algorithms is key to obtain clear and reliable technical KPls.

KPls designed to analyze specific devices and phenomena enabling
faster troubleshooting and issue resolution.

No false positives after four months since deployment.



Open Innovation

Le nostre iniziative di Open Innovation

Valorizziamo idee, progetti e tecnologie per trovare le migliori soluzioni a livello globale. L'approccio Eni all'Open Innovation prevede attivita diversificate con 4 entita:

Tech

Test di soluzioni innovative
e attivazione di ecosistemi

¢

Test di soluzioni
innovative

Testare le migliori startups
per sperimentazioni
selezionate attraverso l'esteso
network dei piu innovativi
ecosistemi di innovazione

™ Jaule

i

Programma di accelerazione
e sviluppo imprenditorialita

Supportare idee,
strategie e percorsi
di crescita delle startup

Visita il sito (7

st e

pa eniverse

-~ .
B K

Corporate Venture Builder
(CVB)

Costruire nuove imprese
valorizzando
le tecnologie di Eni

©

Visita il sito (7

P eninext

N

fsfierfe!

SN

Corporate Venture Capital
(CVQ)

Investire in startup
per lo sviluppo
di tecnologie strategiche

Visita il sito (7

For more details, please visit
https://www.eni.com/it-IT/azioni/innovazione-tecnologica-collaborazioni/open-innovation.html
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