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Digital for R&D: Motivation & Context

Eni applications in R&D to achieve Net Zero Emission

• We have embarked on an industrial transformation involving all business 
lines to decarbonize the entire company. To this end, we invest in 
researching, developing, and implementing transition technologies. 

• According to the technological neutrality principle, there is no single 
solution to achieve the energy transition, we need a technological mix that 
can be adapted to different applications and needs. This is why we are 
developing a wide range of technologies that support the decarbonisation
of each sector of the economy and our daily lives. 

Energy from 
renewables

Fusion Circular 
Economy

CCUS Environment

Electric and 
thermal energy

Decarbonization of 
processes

Ecosystem
restoration

Biofuels, sustainable
chemistry and critical

materials

The electricity and 
thermal energy of

tomorrow

This document is the property of Eni, which holds all rights. The material may not be reproduced, distributed, altered or used for purposes other than consultation by webinar participants.



The information contained in this presentation is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent of Eni Spa

How AI can boost experimentation

Experimental data, scientific 
papers, physical models

EXPERIMENTAL
TRL 1-3

PROTOTYPAL
TRL 4-6

DEMONSTRATION
TRL 7-11

Data from pilot plant, 
advanced physical models

Data from demonstration 
plant, advanced physical 
models

• Data enrichment (from 
existing papers or DBs)

• Knowledge 
extraction/summarization 
and  hypothesis  
generation with GenAI

• Optimal experiment 
planning

• First predictive model 
prototypes

• Physical model calibration
• Surrogate models

• Predictive and prescriptive 
models

• Process parameters 
optimization

• Anomaly detection 
• Surrogate models 

• Industrialization and 
deploy of data-driven 
models and control 
systems

• Dashboard for real-time 
plant monitoring

• Continuous improvement
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Develop a Digital Twin of the plant since the Pilot phase to exploit it in demonstration phase

3
[1] Suardi, M., Cannarile, F., Guastone, G., Fidanzi, A., Millini, R., Testa, D., A Framework for the Application of AI Solutions for Facilitating and
Speeding-Up the Industrialization of Innovative R&D Technologies for Targeting Net-Zero Emissions, Society of Petroleum Engineers - Abu
Dhabi International Petroleum Exhibition and Conference, ADIPEC 2023, 2023.
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STUDY HYPOTHESIZE SCREENING TESTING

Example – AI for material discovery 
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• Extract synthesis recipes from 
literature  (AI) and propose 
potential routes using advanced 
computational modeling 
techniques.

• Analyze experimental data 

• Using computational model to 
validate experimental results
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The discovery process involves four iterative phases: study (analyzing known data and materials), hypothesize (generating candidate 
structures), screening (evaluating candidates), and testing (promising materials through experiments).

• Running computational
chemical physical-based 
models and/or Artificial 
Intelligence based ones to 
assess candidates’ properties.

• Assessing key factors s by 
focusing on those with the 
highest likelihood of success.

• Reviewing prior research, 
patents, and material databases 
to gather relevant insights.

• Extracting and organizing data 
from existing experimental or 
computational investigations

• Simulating by first principle 
methods data set when these are 
not available or not reliable. 

• Proposing a promising set of 
candidates for further evaluation 
via iterative exploration

• Formulating hypotheses using 
theoretical or computational 
model chemical physical-based
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N Defining the problem and desired 
material properties based on the 

intended application. Perform literature 
review and create a first database of 

material  

Formulating hypothesis and 
proposing a set of candidate materials 

with target properties for further 
evaluation

Evaluate material candidates by 
analyzing their predicted properties 
and stability, prioritizing those with 

the highest potential for success in the 
intended application

Determining synthesis pathways, 
synthesizing materials, measuring

properties at atomic and macroscopic 
scales, and refining processes based 

on experimental results

Artificial Intelligence

Advanced Modeling & Simulation



Objective Input Developed solution

Provide a mathematical description
of the system behavior for a better
understanding of the system and
simulate scenarios of interest

• Experimental data
• Data of literature
• Subject Matter Experts knowledge

• First-Principles model based on
differential equations that allows
simulating the trajectory of an
experiment

• Meta-heuristic optimization algorithms
(differential evolution) to calibrate
physical model parameters

Prescribing the optimal set–points for
the experimental setup in order to
performance in real-time

• Simulation from the calibrated first-
principles model

• Reinforcement learning model to
prescribe the best set points for the
experimental setup to optimize system
performance in real-time using
simulations from the first-principles
model

Providing real-time and automated
assessment and prediction of
quantities of interest

• Experimental data
• Calibrated first-principles model

• Machine learning (deep neural
networks) model to predict quantity
of interest to be monitored

FIRST-PRINCIPLES 
MODELING

Example - AI for accelerating carbon capture 
technologies

OPTIMIZATION AND 
CONTROL

PREDICTIVE 
MODELING

Objective
Support research and development in designing, validating and industrializing a new technology for CO2 capture through
developing artificial intelligence tools
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RL Agent

First-Principles Model

Agent action
the algorithm 

proposes new values 
for the control 

variables

First-Principles model 
response

State achieved by the 
system

Reward
System Efficiency

• Modeling approach: the system is represented by the first-principles model. The agent interacts instant by instant with
the first-principles model by proposing new values of the variables to be optimized (actions) and causing the model to
evolve (new state) and return a new value of system efficiency* (reward).

• RL Algorithm: Deep Deterministic Policy Gradient (DDPG)

Reinforcement Learning for optimal system control

Results
System performance obtained with RL is doubled with respect to the not optimized setting

*metric related to system performance while taking into account energy consumption (higher values are better) 
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Focus on Design of Experiment & 
Optimal Experimental Design 



CHALLEGE IN R&D
• Developing new technologies or processes involves many variables

• Resources are limited: experiments cost time, money, and materials.

• Trial-and-error or “one factor at a time” testing is:

• Too slow

• Cannot reveal interactions between factors

• Often gives incomplete or misleading results

THE NEED
R&D teams require:

• Learning more with fewer experiments.

• Building a quantitative understanding of how factors affect outcomes.

• Predicting and optimize results before scaling up.

Why Design of Experiments (DoE)?

8

THE ANSWER: DoE

• DoE provides a statistical 
structured approach to 
experimentation

• Each test is designed to 
contribute maximum 
information to the overall 
picture

• Fewer runs, deeper insights, 
faster and more reliable 
decision making



What is DoE?
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A SMARTER WAY TO 
EXPERIMENT

• DoE is a structured method to plan and 
run experiments

• Instead of changing one variable at a 
time, it tests multiple factors together in 
a systematic way.

• Each experiment is chosen so that, 
combined with the others, it builds a 
complete picture of how the system 
behaves.

WHAT IT
DOES

• Identifies the factors that really matter 
(“vital few”)

• Reveals how factors interact (e.g. 
temperature may matter more at high 
pressure)

• Builds a predictive model linking inputs 
→ outputs

• Helps find the best settings for 
performance, quality, or cost.

WHY IT
 MATTERS

• Saves time and resources by avoiding 
redundant trials.

• Provides scientific confidence instea of 
guesswork.

• Creates knowledge that can be reused 
and scaled up.

Output variables
(Y)

Controllable input 
variables (X)

Process/ product



The DoE Journey
An iterative process where each step builds on the results of the previous one
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Efficiently identify the most 
influential factors (the "vital 
few") from a wide range of 
possibilities. This reduces 
complexity and focuses 
subsequent efforts on a 
smaller, more manageable set 
of variables.

Method: Fractional factorial design
(linear screening model)

Quantify how significant 
factors behave collectively by 
modeling their main effects 
and, crucially, their interactions. 
The outcome is a first-pass 
mathematical model of the 
process that explains how 
variables work together.

Method: Full factorial design (linear 
model with interaction terms)

Locate the optimal settings 
for process variables by 
modeling response 
curvature (i.e., quadratic 
effects). This involves running 
new, targeted experiments to 
precisely estimate the factor 
levels that maximize or 
minimize the output.

Method: Response Surface 
Methodology (RSM) with 
quadratic models (CCD, Box–
Behnken).

Formally validate the final 
model. Use statistical analysis 
to test the significance of all 
model terms, then conduct 
confirmation runs to 
empirically verify the model's 
predictive accuracy and 
ensure the results are 
reproducible

Method: Model diagnostics, 
confirmation runs

2. CHARACTERIZATION 3. OPTIMIZATION 4. VALIDATION1. SCREENING

LEARNING LOOP

This workflow is an example of an iterative learning loop: in practice, steps can also be revisited if needed, and the cycle 
continues until the model is accurate enough and the optimum is confirmed with confidence.



From DoE to Optimal Experimental Design
Evolving from a fixed plan to a dynamic learning strategy
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OED transforms experimentation from following a fixed map to using a smart GPS that constantly 

finds the fastest route to the objective

Classical DoE
The statistic blueprint

Optimal Experimental Design
The adaptive strategy

PLANNING Fixed and pre-defined (e.g., Factorial). Model-based and built sequentially

FLEXIBILITY All runs are decided upfront with no adaptation 
(rigid)

Works as a loop in an adaptive way
(run → update model → choose next).

APPLICABILITY Limited to simple, linear, or polynomial models. Handles complex, non-linear systems and 
practical constraints.

EFFICIENCY Some tests may bring little new information. Leads to faster decisions with fewer experiments.



Optimal Experimental Design
Workflow

12

Experimental tests

Tests suggested by the OED methodology

Target
Variable

Variable X

ML Model – Step 1

ML Model

Prediction
Interval

Minimum 
confidence point

Experimental point

Target
Variable

Variable X

ML Model – Step 0

ML Model

Prediction
Interval

Minimum 
confidence point

Experimental point

Experimental 
test data or 
simulations

Data driven 
probabilistic 

ML model 
update

(Surrogate 
Model)

Model output 
with relative 
uncertainty

Definition and 
update of the 

acquisition 
function

Optimization 
search based 

on the 
selected 
criterion

Experimental 
or simulation 

tests resulting 
from identified 
experimental 

setting

Start
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A probabilistic ML model is used to approximate the unknown process that relates the inputs and the outputs. 
The model should be able to provide

1. A prediction of the output, which is more accurate the more data we have to train the model on
2. A prediction interval around the prediction to represent the uncertainty of the model about the 

prediction

13

Surrogate Model - Data driven probabilistic ML model 

Gaussian Processes (GPs) are typically used for the development of the surrogate model
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An acquisition function defines how to select the inputs for the next experiment. Different acquisition 
functions allow for different experiment design strategies.

Exploitation
• "Go where we think the best results are“
• Like going down the lowest visible valley

Exploration
• "Go where we are most uncertain“
• Like mapping unknown territory

Intermediate strategy
• "Go where we are confident of the best

results, but allow some exploration"
• Balances exploration and exploitation

Each acquisition function has its advantages and disadvantages, and its use depends on the objective.

Making decisions: the acquisition function

14

Exploitation

Exploration

Intermediate strategy



Choosing the next experiment: the acquisition function
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An example of acquisition function

Expected Improvement

Assigns a high score by balancing
two strategies: Exploitation
(leveraging the model's current
certainties, testing where it already
predicts an optimal outcome) and
Exploration (investigating uncertain
areas that might hide a
breakthrough).

Error Reduction

Gives a high score to the
experiment that will most reduce
the model's overall empirical error.
Its goal is to make the model
globally more accurate and
trustworthy.

Constraints

Applies a mathematical penalty 
factor, directly lowering the score of 

any experiment that violates real-
world limits (e.g., cost, time, safety).

𝑥∗ = argmax 
𝑥

𝔼 𝑓 𝒙 , 𝜎 𝒙 ∗  𝜀 𝒙 − 𝛽𝑐(𝒙)

Selected next 
experimental 

point 

Gaussian Processes (GPs) are typically used for the development of the surrogate modelThis  acquisition function combines these competing scores to find the experiment with the highest overall 
rating



HOW IT WORKS

1. The acquisition function (derived from the surrogate model) defines the objective 
function to be optimized.

2. The algorithm explores the input space to find its maximum.

3. The result is the next experimental point to test.

TYPICAL SOLUTION METHODS

• Gradient-based search: fast if the function is smooth, but may get stuck in local 
optima.

• Global search heuristics: genetic algorithms, simulated annealing, particle swarm — 
slower but robust.

• Bayesian optimization routines: combine Gaussian Processes with acquisition 
functions; popular for expensive experiments.

The optimization algorithm

16

Example of iterations using meta-
heuristic optimization 

(Particle swarm optimization)

The optimization algorithm is the numerical solver that finds the most promising next 
experiment, given the surrogate model and the acquisition function.



OED - Feature contribution
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The surrogate mode cab be used to
analyze the most impactful features of the
system and what is their possible effect on
the prediction.
Shapley values are typically used to infer
the feature contribution.

• Feature 1
• Feature 3
• Feature 4
• Feature 8
• Feature 7
• Feature 6
• Feature 9
• Feature 2

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature 6

Feature 7

Feature 8

Feature 9

Positive impact 
on target

Negative 
impact on 

target
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Optimal Experimental Design in Bio-feedstocks 
pretreatment processes



BioRefining Value Chain

Enhancing value across processes

19



Development of an Unconventional Pretreatment Process

20

Definition of UnConventional Bio-Feedstocks

The unconventional raw bio-feedstocks usually contain high
amounts of pollutants such as:
▪ metals,
▪ phosphorous,
▪ salts, etc.

To overcome the conventional pretreatment processes 
battery limits and to widen the bio-feedstock portfolio, 
Eni R&D department has developed an innovative pre-

treatment technology.
20

Definition of UnConventional Pre-treatment Process

The unconventional pre-treatment process is based on the
right selection of:
▪ Operating conditions (contact time, temperature, and

pressure)
▪ Ratio between reagents and phases (oil, water, other

chemicals agent, etc..)

The UNCONVENTIONAL pre-treatment has to be :
• Effective in the contaminants removal;
• Simple with low chemical agents e few reaction steps 
• Flexible capable to purified a wide range of biofeeds
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Unconventional Pretreatment Process: Project Team and Workflow

Subject Matter 
Experts

Solution Development  
Experts

ENI R&D

Data 
ScientistDICOX

Bio-feedstocks (3 Cluster)

Operative Conditions 
Identification

Experiments (137 test)

Linear Models

Chemical-physical models

Optimal Experimental 
Design

Software Development
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Unconventional Pretreatment Process: 
Digital Boost

Data Aggregation
Create an experimental dataset and apply advanced analytics 
techniques to achieve deeper insights and knowledge.

Predictive Model and Optimization
Starting from Eni R&D models, develop predictive data-driven linear 
models to estimate reaction efficiency based on process conditions and 
bio-feedstock properties

Optimal Experimental Design
Apply Optimal Experimental Design techniques to identify new optimal 
experimental tests based on different criteria

Tool Development
Develop a shared tool to allow all R&D users to independently integrate 
DoE within daily work
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Unconventional Pretreatment Process: Data Driven Models

23

Predictive Model and Optimization

Campaign Model MAE MSE

Set 1 linear 0.63 0.72

Set 2 forest 0.38 0.29

Set 3 mlp 3.17 28.57

Set 4 gradient 8.46 152.70

Set 5 forest 2.11 8.72

Set 6 gpr 0.80 0.87

Set 7 forest 2.93 12.66

Cluster 1 gradient 4.21 59.30

Cluster 2 forest 2.54 10.04

Cluster 3 mlp 0.86 2.18

Multi set gpr 3.27 42.85
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Data Aggregation

The model shall be fed with proper input data.

In details:
▪ 6 Parameters of process operative conditions
▪ 17 Parameters of bio-feedstocks (e.g. chemical and

physical properties such as acidity, density, carbon %)

At this stage is deemed necessary:

▪ analysis of input data through ML techniques

▪ to share main outcomes with the subject experts

Different strategies have been implemented:

▪ Different bio-feedstock clustering

▪ Different predictive models

Model training stage:

▪ Multi-set cluster selected

▪ Gaussian Process Regressor selected
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Unconventional Pretreatment Process: Optimal Experimental Design (OED)

Optimal Experimental Design goal is to define a new set of 
experimental test which allow to:

• Filtering inputs relevant to output (screening)
• Build a model to correlates inputs and output (modelling)

In the first stage of analysis, the goals of the experimental 
investigation shall be defined in order to define the constraints.

The constraints may comprise many aspects, even not strictly 
related to the technical activity such as time and cost efforts.

The goal of this specific case study (which is not general) is to 
minimize the pretreatment efficiency.

In order to have different new experimental points,  it was decided 
to combine points with lower pretreatment efficiency and higher 
model uncertainty. 

For the Gaussian Process Regressor (GPR), model uncertainty is the 
variance between model predictions and experimental results

Selection Criteria

Parameters Base 
Case EXP 1 EXP 2 EXP 3 EXP 4

Oper Cond 1 0% -1% 7% -3% 13%

Oper Cond 2 0% -41% -41% -41% 6%

Oper Cond 3 0% 64% 0% 94% 200%

Oper Cond 4 0% -6% 25% 25% 25%

Pretreatment 
Efficiency 0% 14% -30% -1% -11%

Standard Deviation 0% -72% -68% -37% -45%

Experimental Design

• The new experiments are defined through 
the OED procedure based on:

✓ Criterion 1: efficiency minimization

✓ Criterion 2: maximum model 
uncertainty



Unconventional Pretreatment Process:  Web APP

The final stage is the development of a tool (Web APP) with the features:

▪ Collection, management and aggregation of experimental data (database);
▪ Prediction by the data driven model of new experimental data;
▪ Application of Optimal Experimental Design to efficiently boost the entire development process by means of 

upgrading the predictive model.

Database analyses and experiments Data driven model OED



Development and Validation of a 
Performance Analysis Platform for 
Utility-scale Photovoltaics 

       Giacomo Gorni
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Introduction

Objective:
• Reduce capacity downtime 
• Speed up underperformance detection 
• Speed up O&M troubleshooting

Problem:
• Multiple masking factors overlapping
• Handle 100ks of data points per plant each day
• Utility-scale PV are huge

Solution:
• Identify where the losses are located
• Categorize and rank issues 
• Fully automatized process
• User-friendly application

From a “basic” performance 
monitoring  at plant level

𝑃𝑅 ∝
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝐼𝑛𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ∙ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐷𝐶)

To a set of  Key Performance Indicators 
dedicated to main devices (inverters, 

trackers, combiner boxes) 

▪ Automatically calculated
▪ Cleared of all the masking factors
▪ Comprehensive of suggested 

corrective actions 

Methodology Adopted
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Milano
Scale problem

Utility-scale plant

• 250 MW
• 60 inverters
• 1000 CBs
• 500,000 modules
• 2,500,000 m2

• 3000 signals/plant
• 1.7 million 

datapoints/day



29

Traditional monitoring tools

Inverter

• 4 MW
• 16 CBs
• 8,000 modules
• 40,000 m2

Milano

Centrale 
Station

1 inverter
4 MW
9k modules

This inverter is 
underperforming!
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Digital tools as a solution to the scale problem

Combiner box

• 250 kW
• ~20 strings
• 500 modules
• 2,500 m2

From the MW scale…

1 inverter
4 MW
9k modules

…to the 100s kW scale

Problem is here
This CB is off

This 
tracker is 

stuck

Combiner 
box with 

disconnecte
d strings
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Data quality and event labeling

Data analytics tools (AI, ML, physical models…) give access 
to a solid data quality preprocessing and event labeling.

Actual Weather data 
(Temp, Irr, Wind, RH…)

Plant metadata 
(GPS, nominal power, layout…)

Actual production data 
(power, current, voltage…)

Discarded data 
(unphysical, shifted, inconsistent, …)

Data clustering
(event labeling, …)

Reconstruct normal behaviour model
(Digital Twin expected production output, …)

Anomaly identification, 
quantification, categorization
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Data quality and event labeling

Data analytics tools (AI, ML, physical models…) give access 
to a solid data quality preprocessing and event labeling.

• Irradiance sensors anomalies.
• MPP deviations (technical or economical curtailment). 
• Tracker’s wind stow mode. 
• Temperature derating. 
• Rear Irradiance correction for bifacial systems. 
• Tilted irradiance correction by angular response.
• Interrow self-shading effects. 
• Inverter clipping detection and correction.
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Plane-of-array irradiance [W/m2]

Power curve after preprocessing
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Plane-of-array irradiance [W/m2]

Power curve before preprocessing 



33

Target:
• Inverter

Comprehensive metric to 
have a bird-eye view of the 
macro trends occurring in 
the plant.

Target:
• Combiner box

Detectable issues:
• CB off / unavailable
• Non-communication
• Disconnected strings 
• Modules degradation 
• Misalignment with as-

built documentation 

Target:
• Motor

Detectable issues:
• Non-communication
• Stalled trackers 
• Suboptimal angle 
• Wind stow position 

“Advanced” PR DC power health Tracker health

Key Performance Inidicators (KPIs)

Target:
• Inverter

Detectable issues:
• Inverter off / unavailable
• Non-communication
• Low efficiency 
• Derating

DC-AC health
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“Advanced” Performance Ratio – Inverter level
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KPIs developed – Performance Ratio (PR)

• Any possible underlying issue is masked 
by a heavy curtailment from the grid 
operator that artificially reduced the 
daily standard PR

“Basic” Performance Ratio – Inverter level

• Results are clearer and more reliable
• Specific pattern have completely 

different meaning
• Helpful in understanding the more 

affected areas
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From detailed “top-down” Data Analytics…

DC power – Combiner Box level Tracker angles – Motor level

• Captured irradiance at each tracker 
is compared to the optimal under 
ideal orientation. 

• A daily analysis identifies setpoint 
issues (i.e., software) and actual 
angle issues (i.e., mechanical). 

Low performers

Normal behaviour

• DC capacity at each Combiner Box 
(CB) is regressively fitted and 
normalized to actual weather data. 

• A daily peer-to-peer CB comparison 
identifies underperformers.

Stall

Sub-optimal
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… to “bottom-up” new compact KPIs

DC power health – Combiner Box level

Information at the 100s kW scale

Clear anomaly identification:
• CB off (red)
• Disconnected strings (yellow)
• More strings than as-built (dark green)

Tracker health – Motor level

Information at the 100s kW scale

Clear anomaly identification:
• Stalled trackers (continuous 

yellow/orange)
• Ongoing maintenance activities 

(yellow/orange spots)
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0

0.6

Date
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KPIs cross analysis

Comparing KPIs at inverter level:

• Immediate imputation of the 
loss category and identification 
of the anomalous equipment

• Verification over time of the 
effectiveness of the corrective 
actions

PR

DC 
health

DC-AC 
health

Tracker 
health
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Automated Weekly Reporting

• Every week report only the 
outstanding anomalies.

• Quantify the anomalies in terms of 
potential capacity lost to prioritize the 
activities.

• Clearly list the devices on which the 
O&M need to focus their inspections.

• Suggest possible root causes.

• Interactive and downloadable.

• Faster transition from the analysis of 
the anomalies to the action on site.
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Results
• Platform deployed on 4 assets 

• DC Capacity monitored: ~ 650 MW

• Technologies: mono and bifacial; c-Si and CdTe; back-tracking and true-tracking

• Anomalies identified (Nov 2024 - Feb 2025): ~140

• No false positives so far

Disconnected 
strings

40%

CB off
14%

CB out of 
comm.

14%

Difference 
with as-

built
9%

Stalled 
tracker

23%

Anomaly type

Fixed
83%

Repair 
ongoing

11%

Trouble-
shooting

6%

Resolution status
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Conclusion

• Developed and validated on ~650 MW a digital platform designed to 
enhance the performance monitoring of large-scale PV plants.

• Preprocessing and data filtering via physics-driven and data-driven 
algorithms is key to obtain clear and reliable technical KPIs.

• KPIs designed to analyze specific devices and phenomena enabling 
faster troubleshooting and issue resolution.

• No false positives after four months since deployment.



Open Innovation
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For more details, please visit
https://www.eni.com/it-IT/azioni/innovazione-tecnologica-collaborazioni/open-innovation.html
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